Aluminium production technology

Natural occurrence

In the Earth's crust, aluminium is the most abundant (8.3% by mass) metallic element and the third most abundant of all elements (after oxygen and silicon). The Earth's crust has a greater abundance of aluminium than the rest of the planet, primarily in aluminium silicates. In the Earth's mantle, which is only 2% aluminium by mass, these aluminium silicate minerals are largely replaced by silica and magnesium oxides. Overall, the Earth is about 1.4% aluminium by mass (eighth in abundance by mass). Aluminium occurs in greater proportion in the Earth than in the Solar system and Universe because the more common elements (hydrogen, helium, neon, nitrogen, carbon as hydrocarbon) are volatile at Earth's proximity to the Sun and large quantities of those were lost.

Because of its strong affinity for oxygen, aluminium is almost never found in the elemental state; instead it is found in oxides or silicates. Feldspars, the most common group of minerals in the Earth's crust, are aluminosilicates. Native aluminium metal can only be found as a minor phase in low oxygen fugacity environments, such as the interiors of certain volcanoes. Native aluminium has been reported in cold seeps in the northeastern continental slope of the South China Sea.

Aluminium also occurs in the minerals beryl, cryolite, garnet, spinel, and turquoise.[26] Impurities in Al2O3, such as chromium and iron, yield the gemstones ruby and sapphire, respectively. Although aluminium is a common and widespread element, not all aluminium minerals are economically viable sources of the metal. Almost all metallic aluminium is produced from the ore bauxite (AlOx(OH)3–2x). Bauxite occurs as a weathering product of low iron and silica bedrock in tropical climatic conditions. Bauxite is mined from large deposits in Australia, Brazil, Guinea, and Jamaica; it is also mined from lesser deposits in China, India, Indonesia, Russia, and Suriname.

Bayer process and Hall–Héroult processes

Bauxite is converted to aluminium oxide (Al2O3) by the Bayer process. Relevant chemical equations are:

Al2O3 + 2 NaOH → 2 NaAlO2 + H2O
2 H2O + NaAlO2 → Al(OH)3 + NaOH

The intermediate, sodium aluminate, with the simplified formula NaAlO2, is soluble in strongly alkaline water, and the other components of the ore are not. Depending on the quality of the bauxite ore, twice as much waste ("Bauxite tailings") as alumina is generated.

The conversion of alumina to aluminium metal is achieved by the Hall–Héroult process. In this energy-intensive process, a solution of alumina in a molten (950 and 980 °C (1,740 and 1,800 °F)) mixture of cryolite (Na3AlF6) with calcium fluoride is electrolyzed to produce metallic aluminium:

Al3+ + 3 e− → Al

The liquid aluminium metal sinks to the bottom of the solution and is tapped off, and usually cast into large blocks called aluminium billets for further processing. Carbon dioxide is produced at the carbon anode:

2 O2− + C → CO2 + 4 e−

The carbon anode is consumed by reaction with oxygen to form carbon dioxide gas, with a small quantity of fluoride gases. In modern smelters, the gas is filtered through alumina to remove fluorine compounds and return aluminium fluoride to the electrolytic cells. The anode (i.e. the reduction cell) must be replaced regularly, since it is consumed in the process. The cathode is also eroded, mainly by electrochemical processes and liquid metal movement induced by intense electrolytic currents. After five to ten years, depending on the current used in the electrolysis, a cell must be rebuilt because of cathode wear.

World production trend of aluminium

Aluminium electrolysis with the Hall–Héroult process consumes a lot of energy. The worldwide average specific energy consumption is approximately 15±0.5 kilowatt-hours per kilogram of aluminium produced (52 to 56 MJ/kg). Some smelters achieve approximately 12.8 kW·h/kg (46.1 MJ/kg). (Compare this to the heat of reaction, 31 MJ/kg, and the Gibbs free energy of reaction, 29 MJ/kg.) Minimizing line currents for older technologies are typically 100 to 200 kiloamperes; state-of-the-art smelters operate at about 350 kA.

The Hall–Heroult process produces aluminium with a purity of above 99%. Further purification can be done by the Hoopes process. This process involves the electrolysis of molten aluminium with a sodium, barium and aluminium fluoride electrolyte. The resulting aluminium has a purity of 99.99%.

Electric power represents about 20% to 40% of the cost of producing aluminium, depending on the location of the smelter. Aluminium production consumes roughly 5% of electricity generated in the US. Aluminium producers tend to locate smelters in places where electric power is both plentiful and inexpensive—such as the United Arab Emirates with its large natural gas supplies,[30] and Iceland and Norway with energy generated from renewable sources. The world's largest smelters of alumina are located in the People's Republic of China, Russia and the provinces of Quebec and British Columbia in Canada.

In 2005, the People's Republic of China was the top producer of aluminium with almost a one-fifth world share, followed by Russia, Canada, and the US, reports the British Geological Survey.

Over the last 50 years, Australia has become the world's top producer of bauxite ore and a major producer and exporter of alumina (before being overtaken by China in 2007). Australia produced 77 million tonnes of bauxite in 2013. The Australian deposits have some refining problems, some being high in silica, but have the advantage of being shallow and relatively easy to mine.

Aluminium chloride electrolysis process

The high energy consumption of Hall–Héroult process motivated the development of the electrolytic process based on aluminium chloride. The pilot plant with 6500 tons/year output was started in 1976 by Alcoa. The plant offered two advantages: energy requirements were 40% less than plants using the Hall–Héroult process, and the more accessible kaolinite (instead of bauxite and cryolite) was used for feedstock. Nonetheless, the pilot plant was shut down. The reasons for failure were the cost of aluminium chloride, general technology maturity problems, and leakage of the trace amounts of toxic polychlorinated biphenyl compounds.

Aluminium chloride process can also be used for the co-production of titanium, depending on titanium contents in kaolinite.